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We report a simple, safe and stimulating pedagogical demonstration with magnetic compasses
that facilitates intuitive understanding of dipolar interactions and their consequences in magnetic
materials. We determine and discuss special states of classical dipolar spin systems corresponding
to minima, maxima, and saddle-points of their energy surface. While our results for finite systems
readily show how one can expect interesting effects in nano-scale ferroelectric and ferromagnetic
materials, our analysis of macroscopic systems reveals low energy states of magnetic ordering and
the transition states on the paths of switching between them. A computer program developed for
numerical analysis of these model systems, based on the concepts of force constant matrix and
an iterative energy-minimization scheme, can be readily used along with a lab-demonstration with
magnetic compasses.

I. INTRODUCTION

Long-range dipole-dipole interaction plays important
roles in ferromagnets and ferroelectrics, especially in the
formation of domain structures1. For example, in fi-
nite ferroelectric systems, surface charges associated with
uniform spontaneous polarization P cause depolarization
field which has an opposite direction to P , due to the in-
herently long-range interaction. In general, for reducing
the overall energy in the presence of depolarization field,
finite systems exhibit domain structures and stabilize.
But the dipole-dipole interaction, due to its long-range
and strongly anisotropic nature, is not an easy problem
for beginners in physics and material science.

It is also known that the stable states of dipolar
spin systems are sensitive to periodicity, dimensional-
ity, boundary conditions (finite or infinite), size, aspect
ratio2, symmetry, and defects. Recent developments
in nanotechnology introduce a new paradigm for ferro-
magnetic and ferroelectric finite-size particles and wires:
e.g. an x-ray photo-lithography3, a mask technique with
molecular bean epitaxy (MBE)4, and a solution based
method5,6. The role of dipole-dipole interaction has be-
come more important than ever in such dipolar nano-
systems.
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Microscopic dipolar spin systems have been studied
in crystals and crystalline surfaces7, and in interfaces.
Recently, however, Wang et al. used a lithographic
method8 to synthesize a two-dimensional nanoscale frus-
trated dipole system of 80,000 elongated permalloy
(Ni0.81Fe0.19) islands on a native-oxide covered silicon
surface.

Here, we provide a macroscopic model for classical
dipolar spin system: an array of magnetic-compasses, in
which compasses (classical spins) interact via magnetic
dipole-dipole interaction. This system is safe, simple, in-
expensive, rearrangeable, and can be easily manipulated
with hands and/or magnets.

In the following section (Sec. II), we introduce setup of
laboratory demonstration with magnetic compasses and
describe some interesting results obtained with it. In
Section III, We discuss briefly the methods used in com-
putational analysis and its results for ground and other
special states of various cases of dipolar spin systems. We
also point out the differences between infinite and finite
dipolar systems. Finally, we summarize in Section IV.

II. MAGNETIC COMPASS DEMONSTRATION

If one puts two magnetic compasses on a table, well
separated from each other, both point north as pictured
in Fig. 1(a); i.e. earth’s magnetic field (24–66 µT)
dominates the dipole-dipole interaction. As one brings
them closer together, however the dipole-dipole inter-
action takes over below a certain distance. Compass
needles, then, align along the line between them, i.e.
< SN>< SN> in Fig. 1(b). As in Fig. 1(c), if one puts
three, four, or more compasses in a row, one also finds
that they align according to <S N><SN><SN> · · · .
Now, if we arrange the compasses in a square array on a
board and give a jiggling to the board, the compass nee-
dles relax into the states pictured in Fig. 2. As discussed
in section III, such systems have minimum, maximum,
and saddle-point states. Figs. 2(a) and (b) are minimum
states.
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FIG. 1: (a) Two car-windshield magnetic compasses on a
table, sufficiently far apart they both point north. (b) suf-
ficiently close together, the dipole-dipole interaction domi-
nates. (c) Five compasses in a row.

FIG. 2: Observed stable states in the 4× 4 square magnetic-
compass array. In section III, it will be explained that (a)
and (b) are minimum states and (b) is the ground state.

One of the authors, YS, invented this demonstration9

and displayed a triangular array with about 1000 mag-
netic compasses in the Osaka Science Museum as de-
picted in Fig 3(a). The domain structure clearly vis-
ible (Fig 3(b)) in this finite and symmetric triangular
array has been attracting both children and adults, and
stimulating more questions pertaining to the nature of
magnetism in crystals.10

These experiments are easily performed when one uses
magnetic compasses that are designed for use on auto-
mobile windshields, as shown in Figs. 1, 2, and 3. Each
compass has a transparent 28 mm diameter bubble-like
plastic container filled with oil, a suction cup for attach-

FIG. 3: (a) A triangular array of about 1000 magnetic com-
passes, on a rotating table top, that is on display in the Os-
aka Science Museum. (b) Magnetic domains are visible. Ob-
servers can make sure that the effects of earth’s magnetic
field is negligible by rotating the table on which compasses
are placed. Domain structures do not change when the table
is rotated.

ing it to a windshield, and a ferrite permanent magnet
arrow that floats freely in the oil. Dimensions of the fer-
rite magnet are 8 × 6 × 3 mm. The 8 × 3 mm arrow
sides are magnetic poles with surface magnetic fields of
≈ 50 mT, that decay to 1.5 mT at the surface of the
plastic container. For compasses of this strength, the in-
fluence of earth’s magnetic field on them can be neglected
in comparison with that from the interaction between two
compasses, if they are placed within 50–60 mm of each
other. For compasses arranged on a square array such
that the nearest neighbor compasses touch each other,
dipole-dipole interactions dominate over the influence of
earth’s magnetic field for the first three nearest neighbor
compasses.

III. COMPUTATIONAL ANALYSIS

A. Force constant matrix

Consider a 2-dimensional finite system of N dipoles.
The dipoles are placed at coordinates rI = (xI , yI),
I = 1, · · · , N , their momenta are µI = (µIx, µIy), and
their interactions are exclusively dipole-dipole in charac-
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ter. The total interaction energy V is

V ({µI}) =
1
2

∑

Iα

∑

Jβ

µIαΦIα,Jβ µJβ , (1)

where α and β are independent orthogonal directions (x
and y), and ΦIα,Jβ is the force constant matrix

ΦIα,Jβ = − ∂

∂rIα

∂

∂rJβ

1
|rI − rJ | =

δαβ − 3(r̂IJ)α(r̂IJ)β

|rIJ |3 ,

(2)
where rIJ = rI − rJ , a hat indicates a vector of unit
magnitude, e.g. r̂ = r/|r|, and ΦIα,Jβ = 0 for I = J .
We fix the amplitude of each moment µI to unity,

∑
α

µ2
Iα = µ2

Ix + µ2
Iy = 1 , (3)

to simulate the magnetic-compass system. For finding
extrema (minima, maxima, and saddle-points) of the to-
tal interaction energy (1), subject to the constraint (3),
we use an iterative minimization technique: First, only
once at the beginning, we prepare the force constant ma-
trix as in (2). From a spin configuration µIα(k) of the k-th
iteration, we evaluate the force exerted on each dipole,
−∑

Jβ ΦIα,Jβ µJβ(k), then, we update from µIα(k) to
µIα(k+1):

µIα(k+1)
′ = µIα(k) − γ

∑

Jβ

ΦIα,Jβ µJβ(k) , (4)

with normalization to satisfy the fixed-amplitude restric-
tion (3),

µI(k+1) =
µI(k+1)

′

|µI(k+1)
′| . (5)

In Eq. (4), γ is the adjustable dumping factor for steady
minimization. Larger positive γ may achieve faster con-
vergence to the minima but may possibly fall into an
oscillation in the updating scheme. On the other hand, if
γ is set to a negative value, the scheme will converge to
a maximum energy state. The initial guess of spin con-
figuration µIα(1) determines which specific special (min-
imum, maximum or saddle-point) state the scheme will
converge to.

The total interaction energy V is also expressed in ro-
tational angle θI of each dipole as

V ({θI}) =
1
2

∑

I 6=J

cos(θJ − θI)− 3 cos(θJ − φIJ) cos(φIJ − θI)
|rIJ |3 ,

(6)
where φIJ is the rotational angle of rIJ , i.e. tan φIJ =
yIJ/xIJ . Because the first θI derivertives of Eq. (6) are
zero for all I in the neighborhood of extremum V 0 =
V ({θ0

I}), the total interaction energy can be expressed
with deviation angles δθI of each dipole as

V = V 0 +
∑

I

∑

J

∂2V

∂θI∂θJ

∣∣∣∣
θI=θ0

I ,θJ=θ0
J

δθIδθJ , (7)

(b) saddle-point (c) saddle-point

(e) minimum (f) minimum(d) minimum

(a) maximum

+2.3863 -1.8694 -1.9580

-1.9758 -1.9840 -2.1670

FIG. 4: Maximum state (a), saddle-point states (b) and (c),
and minimum states (d)–(f) for the 4 × 4 square array. (f)
is the ground state. Below each panel, averaged interaction
energy per dipole V/16 is indicated. In the idealized system,
the dipoles are “points” at each center of circle. Here, we
emphasize the directions of dipoles and their packings with
arrows and circles.

where for I 6= J ,

∂2V

∂θI∂θJ
=

cos(θJ − θI) + 3 sin(θJ − φ) sin(φ− θI)
|rIJ |3 ,

(8)
and for I = J ,

∂2V

∂θ2
I

=
∑

J 6=I

− cos(θJ − θI) + 3 cos(θJ − φ) cos(φ− θI)
|rIJ |3 .

(9)
Using this θI expression of the total interaction energy,
we can classify extrema into minimum, maximum, and
saddle-point states: At the “minimum state”, all the
eigenvalues of the N × N matrix ∂2V

∂θI∂θJ

∣∣∣
θI=θ0

I ,θJ=θ0
I

are

positive. At the “maximum state” all the eigenvalues are
negative. At the “saddle-point state” some of eigenvalues
are positive and others are negative. We also define the
“ground state” as the lowest-energy minimum state. In
following two subsections, using the minimization scheme
(4) and (5), we search ground states of some square and
triangular dipole arrays which have high symmetries.

B. Square array of dipoles

In Fig. 4, we show the calculated maximum, saddle-
point, and minimum states for the 4 × 4 square array.
It is very interesting that the state shown by Fig. 4(c)
is a saddle-point state. On the demonstration with the
magnetic compasses, the state as Fig. 4(c) behaves like
a stable state. It may be thought that this phenomenon
shows a reasonable state as follows. When the set of
4 × 4 dipoles is divided into by half of the top and bot-
tom, the structure of Fig. 4(c) is made of two clusters of
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FIG. 5: (a) Antiferromagnetic ground-state of the infinite
periodic dipole square lattice which has wave vector k =
(π/a, 0), i.e. —(rI) = (0, 1) exp[iπ

a
xI ], where a is the distance

between nearest neighbor dipoles. —(rI) are illustrated with
small arrows at each site. The direction of the wave vector
k is indicated with a dashed arrow. (b) Degenerate antifer-
romagnetic ground-state which has wave vector k = (0, π/a),
i.e. —(rI) = (−1, 0) exp[iπ

a
yI ]. (c) Canted antiferromagnetic

structure which is a linear combination of (a) and (b), i.e.
—(rI) = (0, 1/

√
2) exp[iπ

a
xI ] + (−1/

√
2, 0) exp[iπ

a
yI ].

2 × 4 dipoles, which show the same type on the ground
state each other. If these two clusters got closer to from
far away each other and the state shown by Fig. 4(c), it
would be easily imagined that the structure of Fig. 4(c)
is stable with the line symmetry. It, however, is impos-
sible that the magnets of each compass put precisely like
Fig. 4(c), because an error of around 10 percentage of the
size occurs in structure of each compass. So, the two clus-
ters on the demonstration with the magnetic compasses
are stable. If the magnets of each compass put precisely
as Fig. 4(c), the line symmetry would brake and they
would fall into the structure of Fig. 4(d). It is interesting
that the above-mentioned consideration on the saddle-
point state shown by Fig. 4(c) and the minimum point
shown by Fig. 4(d) resembles the spontaneously broken
symmetry on Higgs field in elementary particle physics
and creation of the universe in cosmology.

It is surprising that even this high-symmetry 4 × 4
square array exhibits three kinds of minimum states.

It is known that the ground-state of the infinite pe-
riodic square lattice of dipoles forms a continuously de-
generate manifold of antiferromagnetic states11, which
is a linear combination of two independent spin con-
figurations as illustrated in Fig. 5 (In this report, we
use the word “array” for finite systems and “lattice” for
infinite periodic systems.). The interaction energy per
dipole for the infinite periodic square lattice is −2.5495
(We express the interaction energy in units of µ2/a3 the
dipole moment squared divided by the nearest neighbor
distance cubed.).7 The averaged interaction energy per
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FIG. 6: Ground-state averaged interaction energy per dipole
V/N for: (a) M × M = N finite square arrays; (b) finite
triangular arrays with M dipoles on a side and a total of
N = 3M(M−1) dipoles. The interaction energy per dipole in
the ground-state for the infinite square and triangular lattice
system is plotted as dashed holizontal asymptote lines.

FIG. 7: Calculated ground-state of the N = 20 × 20 = 400
dipole square array.

dipole V/N for the M ×M = N finite dipole square ar-
ray approaches to −2.5495 as M increases, as illustrated
in Fig. 6(a). Figure 7 shows the 20 × 20 square array,
in which the spin configuration in central region array
approaches the canted antiferromagnetic structure of the
infinite system (Fig. 5(c)). Exactly the same structure
as in Fig. 7 is achieved in the 20× 20 magnetic compass
square array, but some by-hand one-by-one alignments
and a jiggling of the board on which compasses are placed
are required to reach the ground-state configuration. It
seems that friction between the plastic container and the
arrow of the compasses preventing the system from falling
into its ground state. Compasses with greater accuracy
and stronger magnets may reach the ground state more
easily.

C. Triangular array of dipoles

We also calculated ground-states for the two different
types of finite triangular arrays shown in Fig. 8. Both
exhibit six-fold symmetry on their outer edges, but in
Fig. 8(a) 6-fold symmetry is broken by the central dipole,
while in Fig. 8(b) full six-fold symmetry is maintained.
The latter has a defect (a missing dipole) at the centre.
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(a) (b)

−2.3633 −2.4081

FIG. 8: Ground states of finite triangular arrays with (a) N =
19 and (b) N = 18 dipoles. The averaged interaction energy
per dipole V/N are −2.3633 and −2.4081, respectively.

FIG. 9: Calculated ground-state of the N = 396 triangular
array. Six ferromagnetic domains separated by domain walls
are evident.

This demonstrates how sensitive ground-states of finite
dipolar systems are to their symmetries, defects and size.
This has direct implications to nano-scale electric dipolar
systems, for example ferroelectrics.

The ground-state of an infinite periodic triangular lat-
tice of dipoles is also continuously degenerated but fer-
romagnetic.7 In finite triangular arrays, the continuous
degeneracy breaks down, and domains form to reduce
the depolarization field as depicted in Fig. 3(b), Fig. 8 or
more clearly in Fig. 9. The interaction energy per dipole
in the infinite triangular lattice is −2.7585.7 We evaluate
the averaged interaction energy per dipole V/N in the
ground-states of finite triangular arrays, e.g. Fig. 8(b)
and Fig. 9, in which there are: M dipoles on a side; a total
of N = 3M(M −1) dipoles per array; and 6-fold symme-
try because they do not have central dipoles. Asymptotic
approach of the averaged interaction energy, to that of
the infinite system, is shown in Fig. 6(b). Again, a spin
configuration that is identical to that in Fig. 9 can be
achieved in the magnetic-compass array with one-by-one
manipulation and a jiggling of the board on which com-
passes are placed; analogous to simulated annealing.

FIG. 10: On a numerical simulation, a crystal structure of the
397 dipoles on a hexagon boundary condition is transformed
from the triangle lattice arrangement (a) to the rectangle one
by the quasi-static process. Though antiferromagnetism is
not observed by 92.6◦ (b), a phase transition is observed at
92.55◦ (c).

D. Phase transition between ferromagnetism and
antiferromagnetism

We show calculated phase transitions between ferro-
magnetism and antiferromagnetism. Figure 10 shows the
phase transitions transformed from triangle array to the
square array of the 397 dipoles on the case of a hexagon
boundary condition.

Figure 11 is the case of a diamond boundary condition.
Domains of antiferromagnetism grow up from a energet-
ically unstable place, from the center toward the top left
side and the lower right one.
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FIG. 11: On a numerical simulation, a crystal structure of
the 20 × 20 dipoles is transformed from the triangle lattice
arrangement (a) to the rectangle one by the quasi-static pro-
cess. Domains of antiferromagnetism grow up toward the top
left side and the lower right one from the center by 97.7◦ (b).
A phase transition is observed at 97.6◦ in the top right side
and the lower left one (C).

The angles at which the phase transition occurs depend

on the boundary condition. The angles are 97.7◦ on the
case of a diamond boundary condition and 92.55◦ on the
case of a hexagon boundary condition.

Phenomena like these phase transitions can be ob-
served by the demonstration with tha magnetic com-
passes.9 10

IV. SUMMARY

We introduced an attractive demonstration that uses
magnetic compasses to facilitate intuitive understanding
of dipolar spin systems. Even with a few dozen cheap
magnetic compasses, safe and fascinating experiments
can be performed. Maximum, minimum and saddle-point
states of finite classical dipole arrays are analyzed by us-
ing the force constant matrix and an iterative energy-
minimization scheme. This is a good pedagogical tool
for teaching how the dipole-dipole interactions influence
the structure of special states of dipolar systems.
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Phys. Usp. 34, 883 (1991).
8 R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville,

B. J. Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H.
Crespi, et al., Nature 439, 303 (2006).

9 Y. Saito and K. Yasue, Frontier Perspectives 10, 28 (2001).
10 Y. Saito, Butsuri Kyouiku (Physics Education) 53, 103

(2005), [in Japanese].
11 K. De’Bell, A. B. MacIsaac, I. N. Booth, and J. P. White-

head, Phys. Rev. B 55, 15108 (1997).


